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Abstract—Machine Learning is often associated with 

predictive analytics, for example with the prediction of buying 

and termination behavior, with maintenance times or the 

lifespan of parts, tools or products. However, Machine Learning 

can also serve other purposes such as identifying potential 

errors in a mission-critical large-scale IT process of the public 

sector. A delay of troubleshooting can be expensive depending 

on the error’s severity – a hotfix may become essential. This 

paper examines an approach, which is particularly suitable for 

Static Code Analysis in such a critical environment. For this, we 

utilize a specially developed Machine Learning based approach 

including a prototype that finds hidden potential for failure that 

classical Static Code Analysis does not detect. 

Keywords—association rule mining, Machine Learning, Static 

Code Analysis, German Federal Employment Agency 

I. INTRODUCTION 

A characteristic feature of large software development 
projects are immense requirements for ensuring code quality. 
The case of the German Federal Employment Agency (FEA) 
shows how complex it is to meet such requirements, and 
demonstrates some failure consequences for the development 
team and the organization. ALLEGRO is a mission-critical IT 
process of FEA with a monthly disbursement volume of 
approximately two billion euros (~25 billion euros annually) 
to 10 million households (20 million eligible persons). 
Approximately 50 thousand power users operate the system in 
parallel. About 80 developers implement ALLEGRO 
continuously, which comprises more than 800 thousand lines 
of code. The software development is subject to a strong 
quality-assured procedure and uses the established Static 
Code Analysis (SCA) tool SonarQube. In spite of this, not all 
errors can be discovered before going live. Depending on the 
severity of an error in production, this often has the 
consequence that a hotfix needs to be delivered, which causes 
additional time and resources. 

Newly added code may have “lookalikes” in the already 
existing code. Even if the developers have a broad and deep 
knowledge of the system, for them it is very hard to remember 
and locate existing code that differs minimally from newly 
created code. Human cognitive abilities to recognize such 
repetitions and patterns reach their natural limits at this scale. 
In case of a recent hotfix, the problem occurred in context of 
a not-null check that was missing subsequently to a specific 
variable declaration. 

Classical SCA reaches its limits in the given context and 
complexity. Not every errors in code is recognized, testing 
rules needs to be predefined, classical SCA tools do not learn 

from errors that already occurred, and finally their support to 
programmers is focused on syntactical and grammatical 
corrections, and it is limited to corrections that base on 
predefined rules. Machine Learning (ML) opens up new ways 
to lift these restrictions. A ML based system identifies patterns 
in very large source code, which an individual is not able to 
comprehend anymore. 

Until now, Machine Learning has been used only in few 
contexts of SCA, for example to detect duplicate code or 
suggest better variable names and documentation. However, 
ML methods allow pattern recognition, detection of 
programming rules from existing verified source code and 
violations in newly added code against these previously 
identified rules. Supporting developers in writing code, 
finding bugs, proposing better code conventions and detecting 
code clones are all promising applications of Machine 
Learning. ML is thus able to contribute to Static Code 
Analysis extensively. 

Against this background, the present paper demonstrates a 
new approach of SCA that incorporates ML techniques for 
recognizing patterns in large source code, which emerge in 
software development, and which cannot be comprehended by 
humans. 

The subsequent part of this paper is organized as follows: 
Section 2 discusses theoretical concepts that are relevant for 
the prototype. Section 3 introduces a Machine Learning based 
approach for pattern recognition. The prototype is presented 
in Section 4. Section 5 provides conclusions, limitations, and 
an outlook. 

II. THEORETICAL BACKGROUND 

Source code is a collection of instructions and functions 
written by a programmer and processable by a machine, which 
can be statically or dynamically analyzed in order to find, for 
example, security flaws during automated tests. 

Static Code Analysis is a selection of algorithms and 
techniques used to analyze source code. It applies to code that 
is not running and detects vulnerabilities, errors or poorly 
written code at compile time [1]. Hence SCA can reduce the 
cost of fixing security issues [2]. SCA tools are usually applied 
during early development to ensure code quality and security 
[3]. 

Dynamic Code Analysis (DCA) follows the opposite 
approach: instead of analyzing the software at compile time, 
under the approach of DCA, software is analyzed while it is 
operating. In more concrete terms, Dynamic Code Analysis 



“will monitor system memory, functional behavior, response 
time, and overall performance of the system” [2]. An 
advantage of DCA is the ability of identifying memory 
accesses and buffer overflows [3]. Dynamic Code Analysis is 
used during and after deployment to consider live 
performance or detect potential issues [4], while Static Code 
Analysis is used to analyze software statically, without 
attempting to execute the code [5]. 

Machine Learning independently finds solutions for 
unsolved problems based on existing data and algorithms by 
recognizing patterns, regularities and deviations from these 
regularities. It has been recognized as a valid method for 
analyzing code [cf. 6, 7, 8] and is considered to be promising 
for bug detection and prediction [cf. 9, 10]. Additionally, there 
are various use cases in cyber security [11] or code clone 
detection [12]. Lechtaler et al. [13] introduce a solution for 
automated analysis of source code patches using ML 
algorithms. Allamanis et al. [14, 15] discovered ML to be 
useful for learning to adapt source code or for learning natural 
coding conventions. Additionally, there exist first scientific 
thrust towards code analysis that incorporates ML approaches. 
For example, a group of git repositories named MAST 
(Machine Learning for the Analysis of Source Code Text) is 
available open source [16]. Furthermore, Singh, Srikant and 
Aggarwal [17] introduce an approach for “question 
independent” software grading using ML. Johnson, Song, 
Murphy-Hill and Bowdidge [18] investigated the developers’ 
usage of SCA and came inter alia to the conclusion that 
finding bugs or software defects using static analysis tools is 
faster and cheaper than manual inspections. 

There are a handful of ways to distinguish between ML 
algorithms; for instance regarding the learning style that an 
algorithm adopts and uses. They are usually classified into 
Supervised-, Semi-supervised-, and Unsupervised Learning. 
Relevant in the current context is the latter. 

Unsupervised Learning needs neither predefined target 
values nor feedback from the environment. The learning 
machine tries to detect patterns in the input data itself. Since 
the outcomes are unknown, there is no evaluation of the 
accuracy. In other words, the learning algorithm needs to find 
commonalities among input data, when the outcome in 
training data is not predefined [19]. Frequent Pattern Mining 
and Sequential Pattern Mining are both Unsupervised 
Learning methods. 

Frequent Pattern Mining aims to find relationships among 
the items in a database. Pattern mining refers to algorithms 
that discover interesting, unexpected or useful patterns in data. 
Frequent pattern mining was first proposed by Agrawal, 
Imieliński and Swami [20] in form of association rule mining 
for market baskets analysis. Therein, a transaction is defined 
as a set of distinct items. Given a set of transactions, 
association rule mining finds the rules that enable to predict 
the occurrence of a specific item based on the other items’ 
occurrences within transactions. Typical applications for 
frequent pattern mining are web link analysis, genome 
analysis, or click stream analysis. The most popular algorithm 
is Apriori, which has been first introduced in 1993. A wide 
variety of Apriori based algorithms was developed later, such 
as FP-Growth and Eclat [21]. 

Sequential Pattern Mining deals with data represented as 
a set of sequences. A sequence represents a set of transactions. 
Sequential pattern mining is applied in many cases, such as 

mining DNA (deoxyribonucleic acid) sequences and genomes 
or discovering customer-buying patterns; for example the 
customer buys a laptop, a digital camera, and a card reader 
within several months [22]. 

III. PATTERN RECOGNITION VIA MACHINE LEARNING 

Our idea of applying pattern recognition methods to code 
analysis is to transfer the principle of analyzing a shopping 
basket to SCA. The point of departure for shopping basket 
analysis is a set O of items, and a set F of all transactions, 
where each transaction T=(TID, I) comprises a subset of the 

item set TIDF, IO as shown in Figure 1. 

Items

Transactions

T1 T2

 

Fig. 1. Transactions and objects in shopping basket analysis 

The basic idea is to solve the problem: find item sets such 
as “fish” and “lemon”, which are part of such transactions that 
make up a certain minimum percentage of all transactions. 
These item sets are called “frequent patterns”. These frequent 
patterns are the starting point for finding association rules such 
as “fish follows lemon” or more objectively formulated as 
“who buys fish, also buys lemon”. 

We denote R: XY as an association rule with X,YO, 

XY=. 

Further, a transaction T=(TID, I) satisfies the rule R, when 

it contains the disjoint item sets X and Y, (XY) I. 

Earlier we mentioned a minimum percentage of 
transactions that contain particular item sets. Related to this, 
three parameters needs to be considered for completing the 
defined framework: 

1) The level of support of an item set 
The level of support named as supportF(X) of an item set 

X is the proportion of transactions that contain X, measured in 
the total number of transactions: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋) =
|{𝑇 ∈ 𝐹|𝑇 = (𝑇𝐼𝐷,  𝐼), 𝑋 ⊆ 𝐼}|

|𝐹|


2) The level of support of an association rule 

The level of support named as supportF(XY) of an 

association rule R: XY represents a statistical significance of 
the rule R, determined by the proportion of transactions that 

contain XY, measured in the total number of transactions: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋 → 𝑌) =
|{𝑇 ∈ 𝐹|𝑇 = (𝑇𝐼𝐷,  𝐼), 𝑋 ∪ 𝑌 ⊆ 𝐼}|

|𝐹|

= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋 ∪ 𝑌)

3) The confidence of an association rule 

The confidence named as confidenceF(XY) of an 
association rule describes a degree of confidence for this rule. 



It is calculated from the proportion of transactions that contain 

XY, measured by the number of transactions containing the 
item set X: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐹(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋 → 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋)
 

But what if we do not refer to purchased objects, but to the 
concept of program code as presented here? The core idea is 
to consider code instructions, such as method calls, variable 
declarations or not-null checks as items. In our model, a 
transaction encloses item sets by a Java method. We derive 
association rules based on the frequency of occurrences of 
code instructions within Java methods. In addition, a 
minimum level of support can be configured, for example 
50%, so that items are only considered if they occur in every 
second transaction. 

However, before any pattern recognition may perform on 
code, the measurement concept (when do we considered code 
to be “similar”?) must be determined. It makes less sense to 
consider two variable declarations as similar, if both variables 
has the same name. It is better to make a comparison based on 
the variables’ type. In order to perform these comparisons 
efficiently, the code must be prepared accordingly. Every 
variable declaration and every method call must therefore be 
fully qualified. This preparation is part of the first step in the 
presented approach. The entire verified code base serves as 
input. The output is an attribute-relation file format (ARFF) 
file, which contains the transformed code with fully qualified 

information. In technical jargon, this step is usually referred to 
as “Code Mining” or “API Mining”. 

As a result, the algorithm delivers frequent item sets 
including their support level, and association rules along with 
their support level and confidence. The identification of rules 
bases on verified (“clean”) code. New code, which naturally 
is unverified, will be checked against violations of these rules. 
After new code has passed all quality gates such as unit tests, 
integration tests and peer reviews, it will be merged into the 
verified code base. As the code base grows, so does the model. 
Ultimately, the volume of the transaction database and rule set 
increase the confidence. 

The process is simplified in Figure 2. One of the 
simplifications is that the development of releases in FEA is 
not strictly sequential, but partly parallel – in simple terms the 
development of Release X + 1 has already begun at the end of 
the development of Release X. Moreover, in reality the model 
is updated more often than once per release and in future the 
update process will be automated using a Jenkins job (Jenkins 
is an open source automation server). 

Essentially, Figure 2 illustrates the principle that new or 
newly modified code is checked against the existing rule set 
during the development of releases. If a rule violation occurs, 
the developer checks the affected code, corrects it if necessary, 
and merges the code into the Git repository. Notwithstanding 
this, each push is peer-reviewed by other experienced 
developers. 

Developers Git
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Fig. 2. Theoretical procedure of model development and application 



IV. PROTOTYPE 

A. Technical description 

The system uses three Machine Learning procedures: the 
API Mining for generating an ARFF file (1), the Sequential 
Pattern Mining (2), and the Frequent Item Set Mining for 
recognizing patters in the prepared code that is given by the 
ARFF file (3). Thereby, different open source frameworks are 
used in combination. 

However, it is clearly more demanding to implement 
appropriate algorithms, as it seems at first glance. It proves to 
be practicable using synthetic code as a verified code base and 
place a not-null check at four similar code fragments 
(following the earlier mentioned hotfix case). In a fifth 
fragment that is part of new (unverified) code, the not-null 
check was deliberately omitted. That was our litmus test: it 
was considered passed if the system detects and indicates the 
missing not-null check. During the implementation of the ML 
based system, we gained experiences on how to best use the 
algorithmic adjusting screws. One of the key findings was that 
a very low value for minimum support and confidence was 
needed to find the rule, which was relevant for the mentioned 
hotfix. The system has the following adjusting screws: 

Minimum Support Training specifies the lower limit on 
the relative frequency of patterns, which are to be considered 
for the Pattern Mining process. It causes, patterns of lower 
frequency will not be detected. 

Minimum Confidence Training indicates the minimum 
required confidence of a rule in percent. Let us recall, the 
confidence confidence(X→Y) of a rule is given by the quotient 

sup(XY) / sup(X). 

Max Antecedents Training specifies the limit of item sets 
by pattern X. Patterns that exceed the limit are excluded. A 
Subset of an excluded pattern below the limit will remain. The 
higher the value, the longer the computing time. 

Max Consequents Training specifies the limit of item sets 
by pattern Y. Patterns that exceed the limit are excluded. A 
subset of an excluded pattern below the limit will remain. 
Again, higher values cause longer computing times. 

Max intraprocedural recursion specifies the maximum 
number of recursive steps in resolving method calls. A value 
zero deactivates this feature. 

Training set directory is a directory that contains the .java 
files that are used for mining the patterns and rules. 

Input Pattern Training is a regular expression that filters 
Java classes out of the training set directory. The expression is 
applied to the absolute paths of the .java files. With local 
training (one method at a time), folders that contain tests are 
generally filtered out. A possible expression is: 

.*BProtErgSachlAbsetzungenErmittler.*|.*SubModelAbs
etzung.*|.*DAO.*|.*Constraint.*|.*Helper.*. 

Solely files should be considered as input, whose name 
contain "DAO", "Helper", etc.; in this concrete case, specific 
business objects, data access objects and helper classes. 

Caller Method Space is a regular expression that filters 
out methods from the analysis. Here, the expression is applied 
to the full qualified method name. 

Call Method Space is a regular expression that filters out 
method calls from the analysis. In this case, the expression is 
matched with the full qualified name of a method call. 

 

Fig. 3. Screenshot of the Machine Learning based Eclipse extension 

 



Figure 3 shows the Eclipse extension used by the Federal 
Employment Agency to identify potential errors in 
ALLEGRO’s source code. The screenshot shows the code 
fragment of the hotfix that we used as a reference example in 
this paper. In the method ermittleDatenAusAuskunft the not-
null check was removed (the absence led to the hotfix) and the 
Machine Learning based system was started to analyze this 
method. In fact, the system identified the rule, which states 
that at the relevant position in the code a not-null check must 
occur; and the system correctly suggested to complete this 
code fragment. Specifically, the system indicates that the 
following statement (ItemSetX): 

getAbsetzungsrateBetragDetail 

needs to be collocated with the statement (ItemSetY): 

if(IAbsetzungsrateBetragDetailTO! =null). 

Accordingly, as shown in figure 3, the missing statement is 
indicated at the highlighted line of code 299. 

B. Application and implications 

The system analyzed the source code of ALLEGRO and 
determined the rule relevant to the hotfix. Related to this, the 
main advantage is that Machine Learning is able to identify 
the relevant rules by itself. This is a substantial innovation in 
contrast to the present situation, where developers need to 
provide a list of all necessary rules in advance. Beyond that, 
our ML based system identified further rules. 

One of these rules states that a transaction opened by 
“TransactionalSection.enter” must also be marked as 
“committable” by “TransactionalSection.markCommitable”. 
The error appeared mainly in test code and is partially caused 
by a lack of experience, since in test cases transactions must 
be managed manually, whereas a framework manages 
transactions in productive code. 

Another example is the rule that developers must call the 
round function in certain cases. Additionally, the system has 
also provided guidance on the use of reusable, technically 
appropriate utility/helper methods. 

Let us mention a third example, namely a rule stipulating 
that in test cases a list must be sorted, which contains sums of 
certain monetary amounts (overpayments of health insurance 
contributions). This list should be sorted after its entries were 
summarized in a special processing step. The sorted order is 
important for test cases, since otherwise during a stepwise 
comparison the actual value would differ from the expected 
one. 

V. CONCLUSIONS 

Within this paper, pattern recognition methods were used 
in order to transfer the principle of shopping basket analysis 
to Static Code Analysis. This approach was successfully 
tested within ALLEGRO – a mission-critical IT process and 
complex software system of the Federal Employment Agency. 
We presented and discussed our idea, the mathematical 
foundation, the implementation of the ML based system 
including the configuration of its parameters, and finally the 
experiences of the prototypical use of this system. 

The concept, provided in this paper forms a key 
contribution that Machine Learning can make to SCA. 
However, there exist other possible contributions, which for 
example include the code clone detection that recognizes 

duplicate code, even if it is modified or written differently. 
Vulnerability scans to detect security weaknesses in source 
code are also addressable by Machine Learning. Another area 
of application is naming and documentation suggestion for 
variable names or method names in the code. For this, text-
mining procedures for context determination and analysis that 
originate in the field of ML are suitable. 

The practice of complex software development processes 
has shown that rules with very high confidence are relevant 
and their violation lead to errors. Even more interesting, 
however, are rules with very low confidence, since patterns 
that rarely occur in a large code mass are more difficult to 
recognize by humans. Consequently, a very low value for the 
minimum support and confidence may be required for a deep 
source code analysis. This is an indicator for improving our 
approach, for example by possibly blacklist certain patterns to 
minimize the noise floor. Integrating our system as a plug-in 
for Eclipse opens up new options as well. It is conceivable, for 
instance, to enable “intelligent” auto completion by means of 
Eclipse Code Recommenders. In addition, rules could also be 
included in a revocation list so that they will not continue to 
be displayed. 

In summary, the key benefit of the approach presented 
here is the ability of finding hidden potential for failure that 
classic SCA does not detect. Classical SCA requires one to 
predefine all rules in advance – after a bug becomes apparent 
in production, the rule set will be adjusted in turn. On the 
contrary, Machine Learning has the advantage that rules can 
be found "intelligently" via pattern recognition – before error 
prone code gets merged into the code base and a bug becomes 
on the loose in a productive environment. 
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